

内置 MOSFET 单节锂电池保护 IC

CM1104-EB 内置有高精度电压检测电路和延迟电路,通过检测电池的电压、电流,实现对电池的过充电、过放电、过电流等保护。适用于单节锂离子/锂聚合物可充电电池的保护电路。

■ 功能特点

• 过充电保护电压	4.425 V	精度 ±25 mV
• 过充电解除电压	4.225 V	精度 ±50 mV
• 过放电保护电压	2.400 V	精度 ±80 mV
• 过放电解除电压	3.000 V	精度 ±100 mV
• 放电过流保护电压	0.120 V	精度 ±15 mV
• 短路保护电压	0.500 V	精度 ±150 mV
• 充电过流保护电压	-0.100 V	精度 ±30 mV

2) 充电器检测及负载检测功能

3) 向 0V 电池充电功能 允许 4) 休眠功能 无

 5) 放电过流状态的解除条件
 断开负载

 6) 放电过流状态的解除电压
 V_{RIOV}

7) 低电流消耗

工作时
 2.2 μA (典型值) (Ta = +25°C)
 ・过放时
 0.7 μA (典型值) (Ta = +25°C)

8) RoHS、无铅、无卤素

9) 内置低导通内阻 N-MOSFET

• VDS = 15V

• ESD Rating: 2000V HBM

■ 应用领域

• 手机电池

■ 封装

• DFN 2.43*3.4-4L

■ 系统功能框图

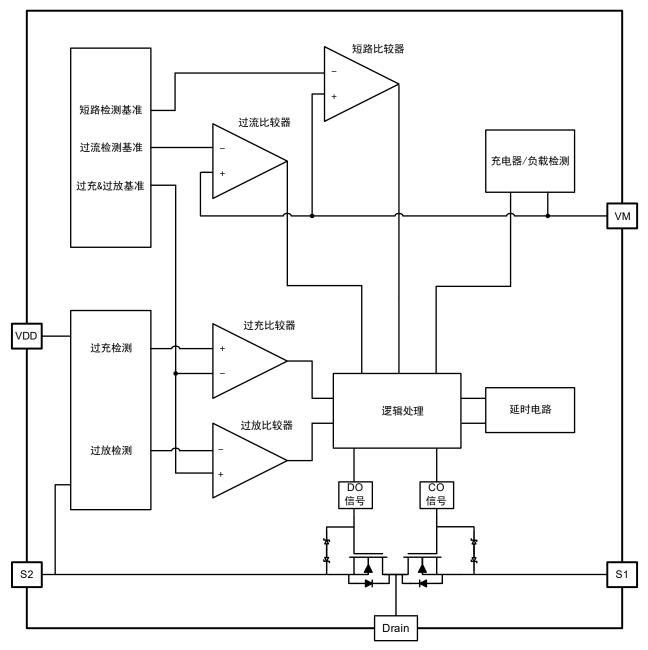


图 1

■ 引脚排列图

DFN2.43*3.4-4L

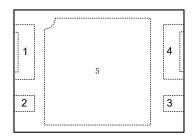


图 2 顶视图

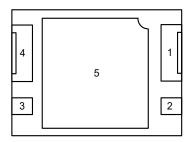


图 3 底视图

引脚号	符号	描述
1	S2	电源接地端,与供电电源(电池)的负极相连
2	VDD	电源输入端,与供电电源(电池)的正极连接
3	VM	充放电电流检测端,与充电器或负载的负极连接
4	S1	充电 MOSFET 源级端,与充电器或负载的负极连接
5	D	两个 MOSFET 的共漏连接端

表 1

■ 印字说明

图 4

第一行:产品型号第二行:生产批次

■ 产品列表

1. 检测电压表

产品名称	Rss(on)	过充电 保护电压 Voc	过充电 解除电压 Vocr	过放电 保护电压 Vop	过放电 解除电压 V ODR	放电 过流 Vec	短路保护 电压 Vshort	充电 过电流 V _{CHA}
CM1104-EB	16 mΩ	4.425 V	4.225 V	2.400 V	3.000 V	0.120 V	0.500 V	-0.100 V

表 2

2. 产品功能表

产品名称	向 0V 电池 充电功能	放电过流状态 解除条件	放电过流状态 解除电压	过充自恢复 功能	休眠功能
CM1104-EB	允许	断开负载	V_{RIOV}	无	无

表 3

3. 延迟时间

产品名称	过充电保护延时	过放电保护延时	放电过流延时	充电过流延时	短路延时
	Toc	Top	Tεc	T _{CHA}	T _{SHORT}
CM1104-EB	80 ms	40 ms	10 ms	10 ms	280 µs

表 4

备注:需要上述规格以外的产品时,请与本公司业务部门联系。

■ 绝对最大额定值

(除特殊注明以外:Ta = +25°C)

项目	符号	绝对最大额定值	单位
VDD 和 VSS 之间输入电压	VDD	VSS-0.3 ~ VSS+8	V
VM 输入端子电压	V _{VM}	VDD-12 ~ VDD+0.3	V
Gate-Source 耐压	V _G s	±12	V
Drain-Source 耐压	V _{DS}	15	V
工作温度范围	Topr	-40 ~ +85	°C
储存温度范围	T _{STG}	-55 ~ + 125	°C

表 5

注意: 所加电压超过绝对最大额定值, 可能导致芯片发生不可恢复性损伤。

■ 电气特性

(除特殊注明以外: Ta = +25°C)

	(除特殊注明以外:Ta = +25°C							
项目	符号	测试条件	最小值	典型值	最大值	单位		
[功耗]								
正常工作电流	lope	VDD=3.5V, V _{VM} =0V	0.9	2.2	5.0	μA		
过放电流	IOPED	VDD=V _{VM} =1.5V	-	0.7	1.5	μA		
[检测电压]								
过充电保护电压	Voc	VDD=3.5 → 4.8V	4.400	4.425	4.450	V		
过充电解除电压	Vocr	VDD=4.8 → 3.5V	4.175	4.225	4.275	V		
过放电保护电压	Vod	VDD=3.5 → 1.5V	2.320	2.400	2.480	V		
过放电解除电压	V _{ODR}	VDD=1.5 → 3.5V	2.900	3.000	3.100	V		
放电过流保护电压	VEC	VM-VSS=0→ 0.30V	0.105	0.120	0.135	V		
短路保护电压	Vshort	VM -VSS=0→ 1.5V	0.350	0.500	0.650	V		
充电过流保护电压	Vcha	VSS -VM=0→ 0.30V	-0.130	-0.100	-0.070	V		
放电过流解除电压	V _{RIOV}	-	VDD-1.4	VDD-1.0	VDD-0.6	V		
[延迟时间]								
过充电保护延时	Toc	VDD=3.5 → 4.8V	40	80	160	ms		
过放电保护延时	Tod	VDD=3.5 → 2.0V	20	40	80	ms		
放电过流保护延时	T _{EC}	VM-VSS=0→ 0.30V	5	10	20	ms		
充电过流保护延时	Тсна	VSS -VM=0→ 0.30V	5	10	20	ms		
短路保护延时	T _{SHORT}	VM -VSS=0→ 1.5V	140	280	560	μs		
[内部电阻]								
VDD 端子-VM 端子间电阻	Rvмc	VDD=1.8V, V _{VM} =0V	750	1500	3000	kΩ		
VM 端子-VSS 端子间电阻	R _{VMS}	VDD=3.5V, V _{VM} =1.0V	10	20	30	kΩ		
[向 0V 电池充电的功能]								
充电器起始电压 (允许向 0V 电池充电功能)	Voch	允许向 0V 电池充电功能	0.0	0.7	1.5	V		

表 6

■ 电气特性

(除特殊注明以外: Ta = -20°C~+60°C*1)

				(陈特殊注明成为	. 14 20 0	- 100 C
项目	符号	测试条件	最小值	典型值	最大值	单位
[功耗]						
正常工作电流	lope	VDD=3.5V, V _{VM} =0V	0.7	2.2	6.0	μΑ
过放电流	IOPED	VDD=V _{VM} =1.5V	-	0.7	3.0	μΑ
[检测电压]						
过充电保护电压	Voc	VDD=3.5 → 4.8V	4.375	4.425	4.475	V
过充电解除电压	Vocr	VDD=4.8 → 3.5V	4.125	4.225	4.325	V
过放电保护电压	Vod	VDD=3.5 → 1.5V	2.240	2.400	2.560	V
过放电解除电压	V _{ODR}	VDD=1.5 → 3.5V	2.800	3.000	3.200	V
放电过流保护电压	V _{EC}	VM-VSS=0→ 0.30V	0.090	0.120	0.150	V
短路保护电压	V _{SHORT}	VM -VSS=0→ 1.5V	0.200	0.500	0.800	V
充电过流保护电压	V _{CHA}	VSS -VM=0→ 0.30V	-0.160	-0.100	-0.040	V
放电过流解除电压	V _{RIOV}	-	VDD-1.6	VDD-1.0	VDD-0.4	V
[延迟时间]						
过充电保护延时	Toc	VDD=3.5 → 4.8V	32	80	200	ms
过放电保护延时	Tod	VDD=3.5 → 2.0V	16	40	100	ms
放电过流保护延时	T _{EC}	VM-VSS=0→ 0.30V	4	10	25	ms
充电过流保护延时	Тсна	VSS -VM=0→ 0.30V	4	10	25	ms
短路保护延时	Tshort	VM -VSS=0→ 1.5V	112	280	700	μs
[内部电阻]						
VDD 端子-VM 端子间电阻	Rvмc	VDD=1.8V, V _{VM} =0V	500	1500	6000	kΩ
VM 端子-VSS 端子间电阻	R _{VMS}	VDD=3.5V, V _{VM} =1.0V	7	20	40	kΩ
[向 0V 电池充电的功能]						
充电器起始电压 (允许向 0V 电池充电功能)	V ₀ CH	允许向 0V 电池充电功能	0.0	0.7	1.7	V

表 7

^{*1.}并没有在高温以及低温的条件下进行筛选,因此只保证在此温度范围下的设计规格。

(除特殊注明以外: Ta = +25°C, VSS=0V)

项目	符号	测试条件	最小值	典型值	最大值	单位
源漏击穿电压	BV _{DSS}	V _{GS} =0V, I _{DS} = 250 μA	15	-	-	V
门极阈值电压	V _{GS(th)}	V _{DS} = V _{GS} , I _{DS} = 250 μA	0.5	0.7	1.0	٧
漏源漏电流	I _{DSS}	V _{DS} =12V	-	-	1.0	μA
门源漏电流	Igss	V _{GS} = ± 10 V, V _{DS} = 0 V	-	-	± 10	μA
源源导通内阻 1	Rss (on)1	VDD=3.0V, ID=1.0A	15	19	25	mΩ
源源导通内阻 2	R _{SS (on)} 2	VDD=3.8V, ID=1.0A	13	16	22	mΩ
源源导通内阻 3	Rss (on)3	VDD=4.2V, ID=1.0A	12	15.5	21	mΩ
源漏二极管正向导通电压	V _{SD}	IS=1.0A, VGS=0V	0.4	0.7	1.2	V

表 8

(除特殊注明以外: Ta = +25°C, VSS=0V)

项目	符号	测试条件	最小值	典型值	最大值	单位	备注
	I _{EC} 1	VDD=3.0V	4.6	6.3	9.6	Α	
放电过流电流值	I _{EC} 2	VDD=3.8V	4.8	7.0	10.8	Α	
	I _{EC} 3	VDD=4.2V	5.1	7.5	12.0	Α	V _{EC} =0.120V
	Icha1	VDD=3.0V	3.0	5.2	9.0	Α	V _{CHA} =-0.100V
充电过流电流值	I _{CHA} 2	VDD=3.8V	3.2	5.8	10.0	Α	
	I _{CHA} 3	VDD=4.2V	3.4	6.2	11.0	Α	

表 9

■ 功能描述

1. 正常工作状态

IC持续检测连接在VDD与VSS端子之间电池电压,以及VM与VSS端子之间的电压,来控制充电和放电。当电池电压在过放电保护电压(VoD)以上并在过充电保护电压(VoC)以下,且VM端子电压在充电过流保护电压(VcHA)以上并在放电过流保护电压(VEC)以下时,IC的CO和DO端子都输出高电平,使充电控制用MOSFET和放电控制用MOSFET同时导通,这个状态称为"正常工作状态"。此状态下,可以正常充电和放电。

注意:初次连接电芯时,会有不能放电的可能性,此时,短接VM端子和VSS端子,或者连接充电器,就能恢复到正常工作状态。

2. 过充电状态

正常工作状态下的电池,在充电过程中,连接在VDD与VSS端子之间电池电压,超过过充电保护电压(Voc),并且这种状态持续的时间超过过充电保护延迟时间(Toc)时,IC的CO端子输出电压由高电平变为低电平,关闭充电控制用的MOSFET,停止充电,这个状态称为"过充电状态"。

过充电状态在如下两种情况下可以解除,CO端子输出电压由低电平变为高电平,使充电控制用MOSFET导通。

- 1) V_{CHA} < VM < V_{EC},电池电压降低到过充电解除电压(V_{OCR})以下时,过充电状态解除,恢复到正常工作状态。
- 2) VM>VEC, 当电池电压降低到过充电保护电压(Voc)以下时, 过充电状态解除, 恢复到正常工作状态, 此功能称为负载检测功能。

注意:在发生过充电保护后连接着充电器的情况下,即使电池电压下降到过充电解除电压(Vocr)以下,也不能解除过充电状态。通过断开充电器的连接,VM端子电压上升到充电过流保护电压(VcHA)以上时,过充电状态解除。

3. 过放电状态

正常工作状态下的电池,在放电过程中,连接在VDD与VSS端子之间电池电压,降低到过放电保护电压(Vop)以下,并且这种状态持续的时间超过过放电保护延迟时间(Top)时,IC的DO端子输出电压由高电平变为低电平,关闭放电控制用的MOSFET,停止放电,这个状态称为"过放电状态"。

当IC进入过放状态后,有以下三种方法解除:

- 1) 连接充电器,若VM≤V_{CHA},当电池电压高于过放电保护电压(V_{OD})时,过放电状态解除,恢复到正常工作状态,此功能称为充电器检测功能。
- 2) 连接充电器或外部触发,若V_{CHA} < VM < V_{EC},当电池电压高于过放电解除电压(V_{ODR})时,过放电状态解除,恢复到正常工作状态。
- 3) 没有连接充电器时,当电池电压高于过放电解除电压(V_{ODR})时,过放电状态解除,恢复到正常工作状态,即"无休眠功能"。

4. 放电过流状态(放电过流保护和短路保护功能)

正常工作状态下的电池,IC通过VM端子电压持续检测放电电流。如果VM端子电压超过放电过流保护电压(V_{EC}),并且这种状态持续的时间超过放电过流保护延迟时间(T_{EC}),则DO端子输出电压由高电平变为低电平,关闭放电控制用的MOSFET,停止放电,这个状态称为"放电过流状态"。而如果VM端子电压超过负载短路保护电压(V_{SHORT}),并且这种状态持续的时间超过负载短路保护延迟时间(T_{SHORT}),则DO端子输出电压也由高电平变为低电平,关闭放电控制用的MOSFET,停止放电,这个状态称为"负载短路状态"。

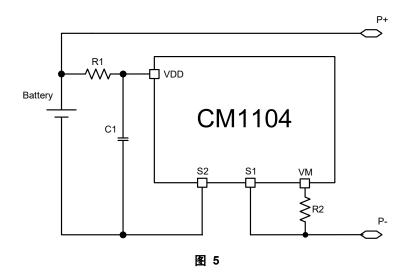
放电过流状态的解除条件 "断开负载" 及放电过流状态的解除电压 "VRIOV"

在放电过流状态下,芯片内部的 VM 端子与 VSS 端子间通过 R_{VMS} 电阻来连接。在连接负载期间,VM 端子由于负载连接而变为 VDD 端子电压。若断开与负载的连接,则 VM 端子恢复回 VSS 端子电压。当 VM 端子电压降低到 V_{RIOV} 以下时,即可解除放电过流状态。

5. 充电过流状态

正常工作状态下的电池,在充电过程中,如果VM端子电压低于充电过流保护电压(V_{CHA}),并且这种状态持续的时间超过充电过流保护延迟时间(T_{CHA}),则CO端子输出电压由高电平变为低电平,关闭充电控制用的MOSFET,停止充电,这个状态称为"充电过流状态"。

进入充电过流保护状态后,如果断开充电器使VM端子电压高于充电过流检测电压(V_{CHA})时,充电过流状态被解除,恢 复到正常工作状态。


6. 向 0V 电池充电功能 (允许)

此功能用于对已经自放电到0V的电池进行再充电。当连接在电池正极(P+)和电池负极(P-)之间的充电器电压,高于"向 0V电池充电的充电器起始电压(V_{0CH})"时,充电控制用MOSFET的门极固定为VDD端子的电位,由于充电器电压使MOSFET 的门极和源极之间的电压差高于其导通电压(V_{th}),充电控制用MOSFET导通,开始充电。这时放电控制用MOSFET仍然是关断的,充电电流通过其内部寄生二极管流过。当电池电压高于过放电保护电压(V_{OD})时,IC进入正常工作状态。

注意:请询问电池供应商,确认所购买的电池是否具备"允许向0V电池充电"的功能,还是"禁止向0V电池充电"的功能。

■ 典型应用原理图

器件标识	典型值	参数范围	单位
R1	1	1.0 ~ 1.5	kΩ
R2	2	1~3	kΩ
C1	0.1	≥ 0.1	μF

表 10

注意:

- 1. 上述参数有可能不经预告而作更改。
- 2. 上述IC的原理图以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。

■ 时序图

1. 过充电保护、充电过流保护

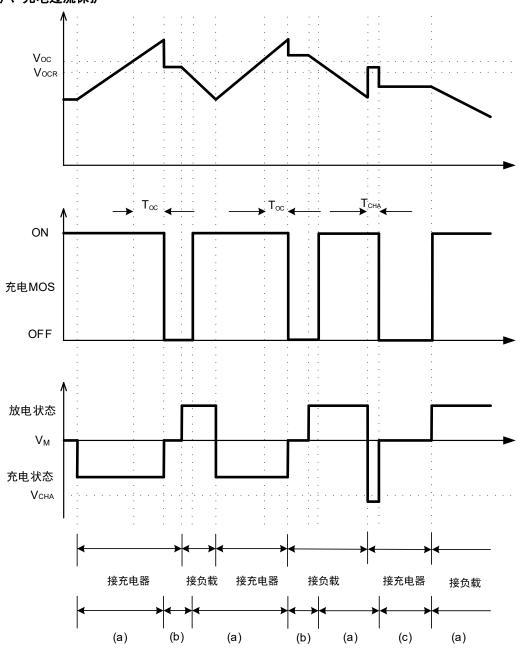


图 6

- (a)正常工作状态
- (b) 过充电状态
- (c) 充电过流状态

2. 过放电保护、放电过流保护

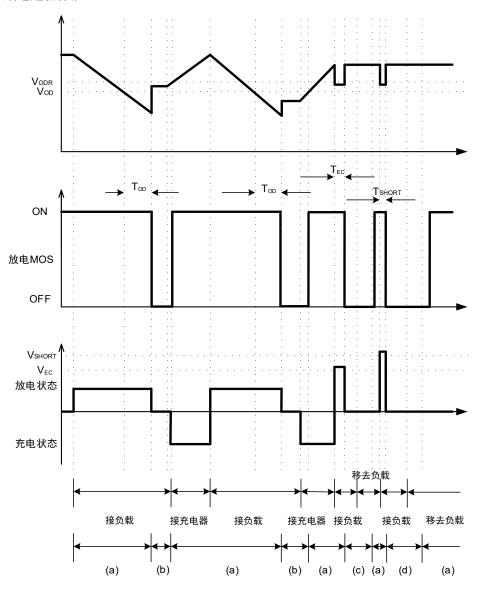


图 7

- (a) 正常工作状态
- (b) 过放电状态
- (c) 放电过流状态
- (d) 负载短路状态

■ 测试电路

1. 过充电检测电压、过充电解除电压(测试电路 1)

在 V1=3.5V 设置后的状态下,逐渐升高 V1 并且保持时间超过过充电检测延时,当 Vs1 的电压由低电平变为大约一个二极管的导通阈值时,充电 MOS 管关断,对应的 VDD-VSS 之间的电压即为过充电检测电压(Voc)。过充保护后,逐渐降低 V1,当 Vs1 的电压由一个二极管的导通阈值变为低电平时,充电 MOS 管开启,对应的 VDD-VSS 之间的电压即为过充电解除电压(Voc8)。

2. 过放电检测电压、过放电解除电压 (测试电路 1)

在 V1=3.5V 设置后的状态下,逐渐降低 V1 并且保持时间超过过放电检测延时, Vs₁ 由低电平变为 V1 时,放电 MOS 管关断,对应的 VDD-VSS 之间的电压即为过放电检测电压(Vop)。过放电保护后,逐渐升高 V1,当 Vs₁ 的电压由 V1 变为低电平时,放电 MOS 管开启,对应的 VDD-VSS 之间的电压即为过放电解除电压(VopR)。

3. 放电过流检测电压、短路检测电压(测试电路 2)

在 V1=3.5V,V2=0V 设置后的状态下,将 V2 在瞬间($10\mu s$ 内)升高并保持时间超过放电过流检测延时(T_{EC}),当 V_{S1} 由 低电平变为 V1 时,放电 MOS 管关断,对应的 VM-VSS 的电压即为放电过流检测电压(V_{EC})。

在 V1=3.5V, V2=0V 设置后的状态下,将 V2 在瞬间(10μs 内)升高并保持时间超过短路保护延时(Tshort),当 Vs₁ 由低电平变为 V1 时,放电 MOS 管关断,对应的 VM-VSS 的电压即为短路保护电压(Vshort)。

4. 充电过流检测电压(测试电路 2)

在 V1=3.5V, V2=0V 设置后的状态下,将 V2 在瞬间(10μs 内)降低并保持时间超过充电过流检测延时(T_{CHA}),当 V_{S1} 由低电平变为 0.5V 左右(充电管体二极管电压),充电 MOS 管关断,对应的 VM-VSS 的电压即为充电过流检测电压(V_{CHA})。

5. 正常工作消耗电流、过放时消耗电流 (测试电路 2)

在 V1=3.5V, V2=0V 设置后的状态下,流过 VDD 端的电流 IDD 即为正常工作时消耗电流(lope)。

在 V1=3.5V, V2=0V 设置后的状态下, 然后将 V1 由 3.5V 调整到 1.5V, 进入过放电状态后将 VM 端悬空, 此时流过 VDD 端的电流 IDD 即为过放时消耗电流(Ioped)。

6. 过充电检测延时、过放电检测延时(测试电路 3)

在 V1=3.5V 设置后的状态下,将 V1 的电压上升到 Voc 或以上并维持一段时间后,Vs1 的值由低电平变为一个二极管的阈值,这段时间即为过充电检测延时 Toc。

在 V1=3.5V 设置后的状态下,将 V1 的电压下降到 V_{OD} 或以下并维持一段时间后, V_{S1} 的值由低电平变为 V1,这段时间即为过放电检测延时 T_{OD} 。

7. 放电过流检测延时、短路保护延时(测试电路 4)

在 V1=3.5V, V2=0V 设置后的状态下,将 V2 的电压瞬间(10μs 内)上升到 VEC 或以上,且 VSHORT 以下并维持一段时间后,VS1 的值由低电平变为 V1,这段时间即为放电过流检测延时 TEC。

在 V1=3.5V, V2=0V 设置后的状态下,将 V2 的电压瞬间(10μs 内)上升到 VsHORT 或以上并维持一段时间后,Vs1 的值由低电平变为 V1,这段时间即为短路保护延时 TsHORT。

8. 充电过流检测延时(测试电路 4)

在 V1=3.5V,V2=0V 设置后的状态下,将 V2 的电压瞬间($10\mu s$ 内)降低到 V_{CHA} 或以下并维持一段时间后, V_{S1} 由低电平变为 0.5V 左右(充电管体二极管电压),充电 MOS 管关断,这段时间即为充电过流检测延时 T_{CHA} 。

9. 允许向 0V 电池充电的充电器起始电压 ("允许"向 0V 电池充电功能) (测试电路 5)

在V1=0V,V2=0V设置后的状态下,将V2缓慢降低,当S1端子出现大于10 μ A的充电电流时,所对应的V2电压即是允许向 0V电池充电的充电器起始电压 (V_{0CH})。

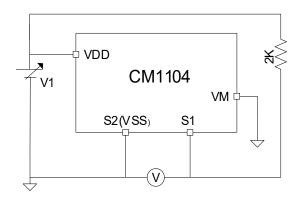


图 8 测试电路 1

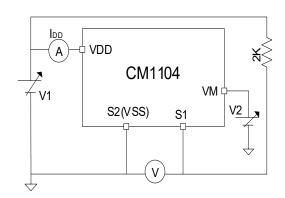


图 9 测试电路 2

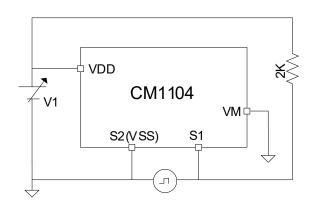


图 10 测试电路 3

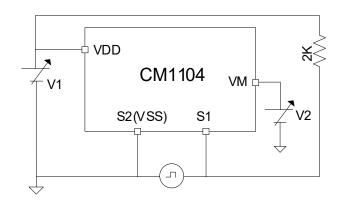


图 11 测试电路 4

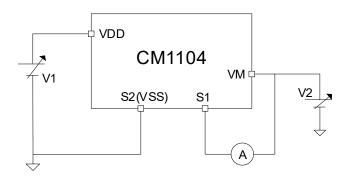
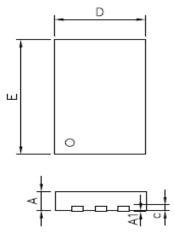
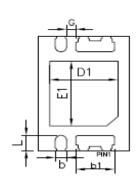
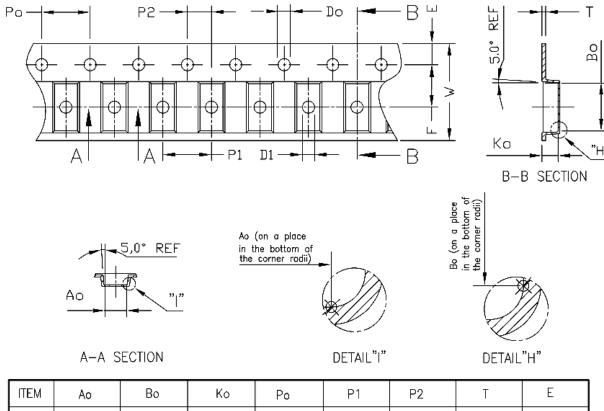



图 10 测试电路 5

■ 封装信息

DFN2.43-3.4-4L




图 12

dimensions symbol	MIN(mm)	NOM(mm)	MAX(mm)		
Α	0.40	0.50	0.60		
A1	0	0.03	0.05		
b	0.25	0.3	0.35		
b1	1.15	1.2	1.25		
С	0.152				
D	2.38	2.43	2.48		
G	0.3				
E	3.35	3.4	3.45		
E1	2.05	2.1	2.15		
D1	1.95	2.0	2.05		
L	0.35	0.4	0.45		

表 11

■ 载带信息

ITEM	Ao	Во	Ко	Ро	P1	P2	Т	E
Dim.	2.70±0.10	3.85±0.10	1.05±0.10	4.0±0.10	4.0±0.10	2.0±0.05	0.25±0.05	1.75±0.10
ITEM	F	Do	D1	W	10Po			
Dim.	5.50±0.05	1.55±0.05	1.55±0.05	12.0±0.30	40.0±0.10			

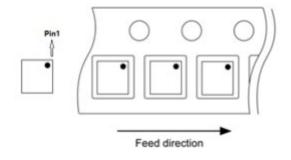


图 13

■ 卷盘信息

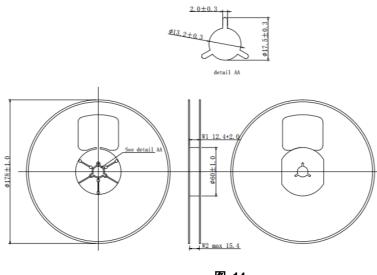


图 14

■ 包装信息

卷盘	颗/盘	盘/盒	盒/箱	
7"	3000	10	4	

使用注意事项

- 1. 本说明书中的内容,随着产品的改进,有可能不经过预告而更改。需要更详细的内容,请与本公司市场部门联系。
- 2. 本规格书中的电路示例、使用方法等仅供参考,并非保证批量生产的设计,因第三方所有权引发的问题,本公司对此概不承担任何责任。
- 3. 本规格书在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用客户的产品或设备时,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4. 请注意在规格书记载的条件范围内使用产品,请特别注意输入电压、输出电压、负载电流的使用条件,使IC内的功耗 不超过封装的容许功耗。对于客户在超出规格书中规定额定值使用产品,即使是瞬间的使用,由此造成的损失,本公 司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本规格书中的产品,未经书面许可,不可用于可能对人体、生命及财产造成损失的设备或装置的高可靠性电路中,例如: 医疗器械、防灾器械、车辆器械、车载器械、航空器械、太空器械、核能器械等,亦不得作为其部件使用。 本公司指定用途以外使用本规格书记载的产品而导致的损害,本公司对此概不承担任何责任。
- 7. 本公司一直致力于提高产品的质量及可靠性,但所有的半导体产品都有一定的概率发生失效。 为了防止因本产品的概率性失效而导致的人身事故、火灾事故、社会性损害等,请客户对整个系统进行充分的评价,自行 负责进行冗余设计、防止火势蔓延措施、防止误工作等安全设计,可以避免事故的发生。
- 8. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,封装和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 9. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 10. 本规格书中内容,未经本公司许可,严禁用于其它目的的转载或复制。