

功能描述

CM1881 是一款可在持续直流或瞬态输入电压≤85V下工作的耐受超高电压的线性稳压器。

CM1881 器件在任何高于 1µF 输出电容以及高于 1µ输入电容搭配使用时均可保持稳定工作,因此只需占用非常小的电路板空间。

CM1881 具有热关断和电流限制功能,以便于故障情况下保护系统。

此外, CM1881 是理想的电池应用器件。能够承受超高的快速电压瞬变并在其间保持稳压状态。

应用领域

- 汽车电子
- 以太网供电(POE)
- 电池供电系统
- 偏压电源

产品特点

- 最高耐受输入电压: 85V
- 宽范围输入电压: 4.5V 至 85V
- 输出精度: 1.5%
- 低静态电流: 3µA
- 最大输出电流: 80mA
- 输出电压: 3.3V, 5V, 12V
- 小电容搭配使用均可保持稳定工作
- 输入电容≥1µF
- 输出电容≥1µF
- 内置限流保护功能
- 内置热关断保护功能
- 封装形式可选:

CM1881A/C SOT89-3

选型表

型号	输出电压	封装		
CM1881X33	3.3V			
CM1881X50	5.0V	X 代表封装: A/C: SOT89-3		
CM1881XA2	12V			

表 1

典型应用图

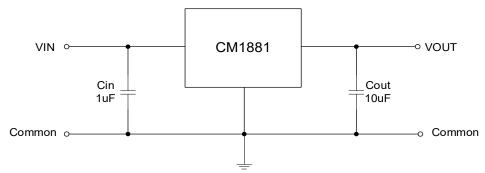


图 1 CM1881 SOT89-3 典型应用电路原理图

器件标识	典型值	参数范围	单位
Cin	1	1~10	μF
Cout	10	4.7~22	μF

表 2 CM1881 典型应用器件参数

功能框图

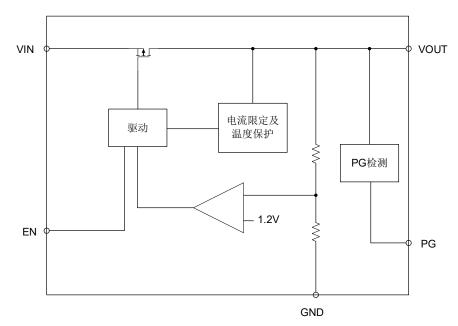
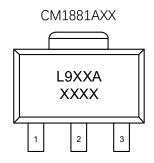



图 2 CM1881 系列 功能模块框图

管脚定义

管脚号	管脚名	描述
1	GND	地
2	VIN	输入
3	VOUT	输出

L9XXC XXXX

管脚号	管脚名	描述
1	VOUT	输出
2	GND	地
3	VIN	输入

表4

表 3

极限参数

(TA=25°C)

描述	极限值	单位
VIN到地耐压	-0.3~90	V
VOUT到地耐压	-0.3~15	V
使能端,电源状态端电压	-0.3~7	V
存储温度	-55~150	Ŋ
工作结温	-40~150	°C
热阻SOT89-3	180	°C/W

表 5

注意: 如超过上表中极限参数可能会对产品造成无法恢复的损伤,长期在极限参数下使用会影响产品可靠性。

申性参数

(除特殊注明以外: Ta = +25°C)

参数	符号	测试条件	最小值	典型值	最大值	单位
输入电压	VIN		4.0		85	V
		VOUT=3.3V, IOUT=5mA	3.25	3.3	3.35	V
输出电压	VOUT	VOUT=5.0V, IOUT=5mA	4.9	5.0	5.1	V
		VOUT=12V, IOUT=5mA	11.85	12	12.15	V
输入电压低压阈值	VUVLO			3.3		V
	IQ	VOUT=3.3V, IOUT=0		17	30	μA
静态功耗		VOUT=5.0V, IOUT=0		3	5	μA
		VOUT=12V, IOUT=0		3	5	μA
线性调整率	ΔVOUT*100/	IOUT=1mA,		50		mV/V
	ΔVIN*VOUT	VIN=(VOUT+2V) to 80V				IIIV/V
负载调整率	ΔVOUT	IOUT=0.1~30mA, VIN=48V		50		mV
最小压差	VDROP	IOUT=30mA		400		mV
电源抑制比	PSRR	IOUT=15mA Cout=10uF f=100Hz		45		dB
限制电流	ILIMIT			70		mA
过温保护				150		$^{\circ}$
过温恢复				120		$^{\circ}$

表 6

注意: 以上PSRR和TSHDN参数并不是100%全测,而是由设计和特性保证。

特性描述

工作状态

CM1881 是一款耐受超高电压的线性稳压器,它是为标准线性稳压器无法使用的高压应用而设计的。该功能完全集成到封装中,与多芯离散解决方案相比,最大限度地减少 PCB 面积和组件数量。

内部限流

CM1881 内置的电流限制功能有助于在故障条件下保护调节器。器件产生的最大电流即为电流极限值(70mA,典型值)。为了保证可靠性,器件不能在电流限流值长时间运行。

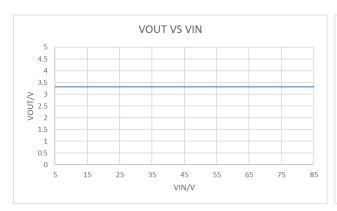
压差工作模式

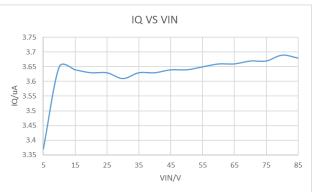
如果输入电压低于标称输出电压加上指定的压差电压,但满足正常工作的所有其他条件,则器件工作在压差模式。在这种工作模式下,输出电压即为输入电压减去最小压差。此时器件的瞬

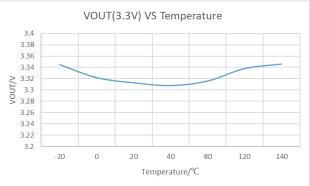
态性能显著降低,因为导通器件处于饱和状态, 不再通过 LDO 控制电流。掉线时的线路或负载 瞬态会导致较大的输出电压偏差。

输入/输出电容

CM1881 器件线性稳压器的最小输出电容为 10 μF, 最小输入电容为 1μF 的稳定性。输入、输出和旁路电容应采用低等效串联电阻(ESR)电容。需要具有 X7R 和 X5R 介质的陶瓷电容器。陶瓷 X7R 电容器提供了更好的电压和温度系数, 而陶瓷 X5R 电容器是在性能匹配上是最具性价比的。


热关断保护


当结温升至约 150℃时, 因为热关断保护将禁用输出电路, 从而使设备冷却。当结温冷却到大约 120℃时, 就启用输出电路。根据功耗、热阻和环境温度的不同, 热保护电路可以循环开断。这种循环限制了调节器的耗散, 保护其不因过热而损坏。


特性曲线

测试条件: TA=25℃, IOUT=1mA, Cout=10uF

封装信息

SOT89-3

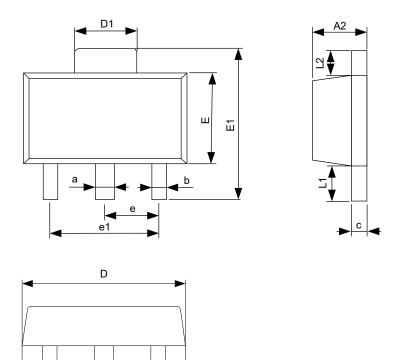


图 3

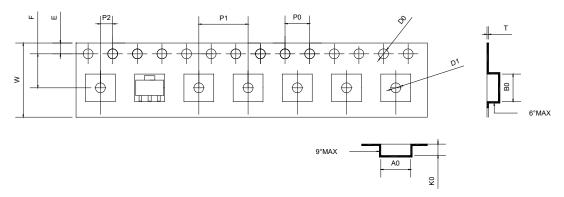
REF.	Millimeter			
	min	max		
A2	1.40	1.60		
а	0.45	0.55		
b	0.38	0.48		
С	0.36	0.46		
D	4.20	4.80		
D1	1.60	1.80		
Е	2.40	2.60		
E1	4.00	4.30		
е	1.00	2.00		
e1	2.95	3.05		
L1	0.80	1.00		
L2	0.65	0.75		

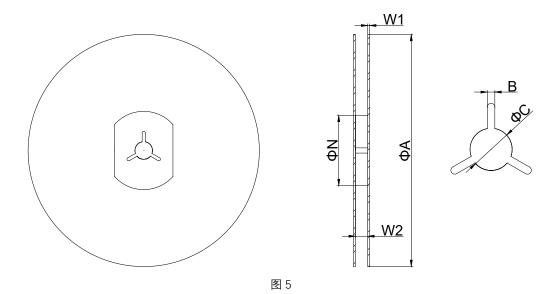
表 7

■ 载带信息

SOT89-3

Loaded tape feed direction \rightarrow




图 4

Туре	W*P1	Unit
SOT89-3	12.0*4.0	mm
Item	Specification	Tol. (+ /-)
W	12.00	+0.30/-0.10
F	5.50	±0.05
E	1.75	±0.10
P2	2.00	±0.05
P1	4.00	±0.10
P0	4.00	±0.10
P0*10	40.00	±0.20
D0	1.55	±0.10
D1	1.55	±0.10
Т	0.25	±0.02
В0	4.45	±0.10
A0	4.85	±0.10
K0	1.85	±0.10

表 8

■ 卷盘信息

■ 包装信息

封装形式	卷盘	颗/盘	盘/盒	盒/箱	
SOT89-3	7"×12mm	1000 PCS	10	4	

表 9

使用注意事项

- 1. 本说明书中的内容,随着产品的改进,有可能不经过预告而更改。需要更详细的内容,请与本公司市场部门联系。
- 2. 本规格书中的电路示例、使用方法等仅供参考,并非保证批量生产的设计,因第三方所有权引发的问题, 本公司对此概不承担任何责任。
- 3. 本规格书在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用客户的产品或设备时,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4. 请注意在规格书记载的条件范围内使用产品,请特别注意输入电压、输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。对于客户在超出规格书中规定额定值使用产品,即使是瞬间的使用,由此造成的损失,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本规格书中的产品,未经书面许可,不可用于可能对人体、生命及财产造成损失的设备或装置的高可 靠性电路中,例如:医疗器械、防灾器械、车辆器械、车载器械、航空器械、太空器械、核能器械等, 亦不得作为其部件使用。
 - 本公司指定用途以外使用本规格书记载的产品而导致的损害,本公司对此概不承担任何责任。
- 7. 本公司一直致力于提高产品的质量及可靠性,但所有的半导体产品都有一定的概率发生失效。 为了防止因本产品的概率性失效而导致的人身事故、火灾事故、社会性损害等,请客户对整个系统进行充分的评价,自 行负责进行冗余设计、防止火势蔓延措施、防止误工作等安全设计,可以避免事故的发生。
- 8. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,封装和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 9. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 10. 本规格书中内容, 未经本公司许可, 严禁用于其它目的的转载或复制。