

CM13C1 系列

8~12 串带均衡功能电池保护 IC

CM13C1 系列是一款专用于 8 ~ 12 串锂/铁/钠电池的保护芯片,内置有高精度电压检测电路和电流检测电路。通过检测各节电池的电压、充放电电流及温度等信息,实现电池过充电、过放电、均衡、断线、低压禁充、放电过电流、短路、充电过电流、过温保护、电子锁、充电禁止放电等功能,保护延时内置。

■ 功能特点

1) 高葙皮甲池甲片核测划值	1)	高精度电池电压检测功能
----------------	----	-------------

www.icm-semi.com

• 过充电保	R 护电压	3.600 V ~ 4.450 V	精度 ±20 mV
• 过充电迟]滞电压	0.100 V / 0.200 V	精度 ±50 mV
• 均衡开启	l电压	过充电解除电压-0.025 V	精度 ±25 mV
• 过放电保	R 护电压	1.500 V ~ 3.000 V	精度 ±50 mV
• 过放电解	除电压	2.000 V ~ 3.400 V	精度 ±80 mV
2) 三段放电流	过流保护功能		
• 过电流 1	保护电压	0.025 V / 0.050 V	精度 ±5 mV
		0.100 V / 0.150 V	精度 ±10 mV
• 过电流 2	保护电压	2*过流 1 保护电压	精度 ±10%
• 短路保护	电压	4*过流 1 保护电压 / 5*过流 1 保护电压	精度 ±10%
3) 充电过流保	保护功能		
• 充电过流	保护电压	-0.010V / -0.025V / -0.050V	精度 ±5mV
		-0.100V	精度 ±10 mV

- 4) 充电器检测及负载检测功能
- 5) 充、放电高、低温保护功能
- 6) 电池断线保护功能
- 7) NTC 电阻断线保护功能
- 8) 低压禁止充电功能
- 9) 电子锁功能
- 10) 充电禁止放电功能(全分口)
- 11)低电流消耗

工作时 20 μA (典型值) (Ta = +25°C)
休眠时 6.0 μA (典型值) (Ta = +25°C)

12)RoHS、无铅、无卤素

■ 应用领域

- 电动自行车、滑板车、储能电源
- UPS 后备电源
- 8 ~ 12 串可充电电池组

■ 封装

• SSOP28

■ 系统功能框图

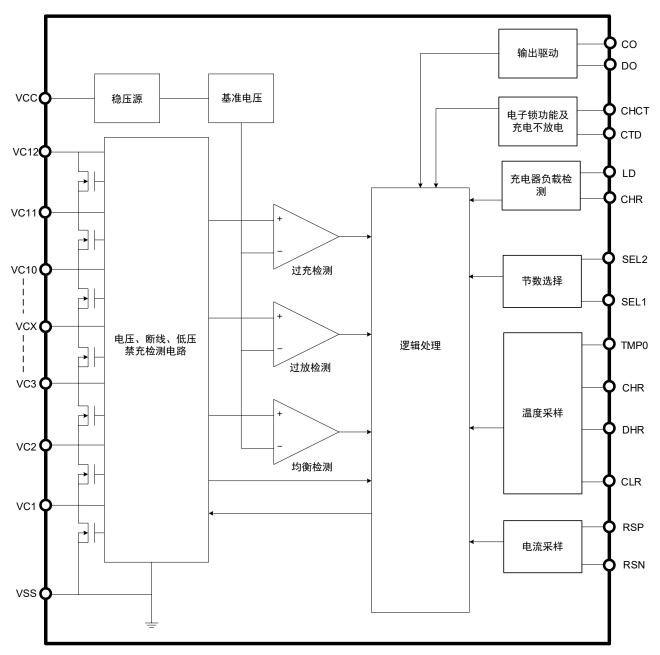
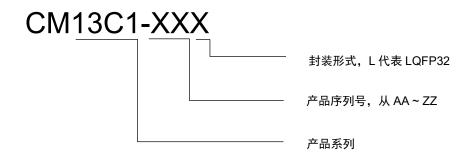



图 1

■ 命名规则

■ 印字说明

第一行: LOGO 第二行: 产品型号 第三行: 生产批次

■ 产品目录

1. 检测电压表

产品名称	过充电 保护电压 V _{oc}	过充电 解除电压 V _{OCR}	均 衡 启动电压 V _{BAL}	过放电 保护电压 V OD	过放电 解除电压 V _{ODR}	放电 过流1 V _{EC1}	放电 过流2 V _{EC2}	短路 保护 V _{SHORT}	充电 过流 V _{CHA}
CM13C1-DAN	4.250 V	4.150 V	4.125 V	2.700 V	3.000 V	0.050 V	0.100 V	0.200 V	-0.025 V
CM13C1-GAN	3.650 V	3.550 V	3.525 V	2.300 V	2.500 V	0.050 V	0.100 V	0.200 V	-0.025 V

表 1

2. 检测电压表

产品名称	过充电保护延时 Toc	过放电保护延时 T _{OD}	放电过流1延时 T _{EC1}	放电过流2延时 T _{EC2}	充电过流延时 T _{CHA}	短路延时 T _{SHORT}
CM13C1-DAN	1.2 s	1.2 s	1.2 s	120 ms	300 ms	300 us
CM13C1-GAN	1.2 s	1.2 s	1.2 s	120 ms	300 ms	300 us

表 2

3. 产品功能表

产品名称	内置高温保护温度	低压禁充功能		
CM13C1-DAN	85°C	有		
CM13C1-GAN	85°C	有		

表 3

■ 引脚排列图

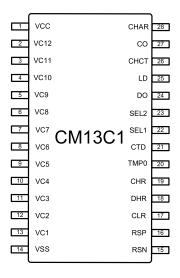


图 3

引脚号	符号	描述
1	VCC	芯片电源引脚,电池 12 正极连接端子
2	VC12	电池 12 的正电压连接端子
3	VC11	电池 12 的负电压、电池 11 的正电压连接端子
4	VC10	电池 11 的负电压、电池 10 的正电压连接端子
5	VC9	电池 10 的负电压、电池 9 的正电压连接端子
6	VC8	电池 9 的负电压、电池 8 的正电压连接端子
7	VC7	电池 8 的负电压、电池 7 的正电压连接端子
8	VC6	电池7的负电压、电池6的正电压连接端子
9	VC5	电池 6 的负电压、电池 5 的正电压连接端子
10	VC4	电池 5 的负电压、电池 4 的正电压连接端子
11	VC3	电池 4 的负电压、电池 3 的正电压连接端子
12	VC2	电池 3 的负电压、电池 2 的正电压连接端子
13	VC1	电池 2 的负电压、电池 1 的正电压连接端子
14	VSS	芯片地
15	RSN	电流采样负端子
16	RSP	电流采样正端子
17	CLR	充电低温设置电阻连接端子
18	DHR	放电高温设置电阻连接端子
19	CHR	充电高温设置电阻连接端子
20	TMP0	内置档温度电阻连接端子
21	CTD	电子锁开关控制端子
22	SEL1	电池节数选择端子 1
23	SEL2	电池节数选择端子 2
24	DO	放电保护输出端子,限压 12V
25	LD	负载检测输入端子
26	CHCT	充电检测输出控制端子,脉冲输出
27	CO	充电保护输出端子,限压 12V
28	CHAR	充电器检测输入端子

表 4

■ 绝对最大额定值

(除特殊注明以外: Ta = +25°C)

项目	符号	适用端子 (n=1 ~ 12)	绝对最大额定值	单位
电源电压	VCC	VCC	VSS-0.3 ~ VSS+80	V
输入电压 0	V _{CELL}	VCn	VSS-0.3 ~ VSS+80	V
输入电压 1	V _{IN1}	SEL1, SEL2, TMP0, CTD, CO, DO, CHCT	VSS-0.3 ~ VSS+20	V
输入电压 2	V _{IN2}	CHR, DHR, CLR, RSP, RSN	VSS-0.3 ~ VSS+5.5	V
输入电压 3	V _{IN3}	LD	VSS-0.3 ~ VCC+0.3	V
输入电压 4	V _{IN4}	CHAR	VCC-80 ~ VCC+0.3	V
工作环境温度	T _{OPR}	_	-40 ~ +85	°C
保存温度范围	Tstg	_	-55 ~ +125	°C

表 5

注意: 所加电压超过绝对最大额定值, 可能导致芯片发生不可恢复性损伤。

■ ESD 等级

			参数值	单位
V/EOD) 答述	热中社中	HBM 模式	±4000	V
V(ESD)等级	静电放电	CDM 模式	±1000	V

■ 额定工作电压

项目	符号	最小值	最大值	单位
VCC 输入电压	vcc	4.5	72	V
VCX 电压	VCn -VC(n-1)	-	5.5	V
输入引脚电压 1	SEL1, SEL2, TMP0, CTD, CHCT	-	20	V
输入引脚电压 2	CHR, DHR, CLR, RSP, RSN	-	5.5	V

■ 电气特性

(除特殊注明以外: Ta = +25°C)

	项目	符号	测试条件 (n=1 ~ 11)	最小值	典型值	最 大值	单位
-	工作电压	VCC	-	8	-	72	V
正常工作电流		I _{VCC}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V	-	20	30	μA
休眠电流		I _{STB}	VCn - VCn+1 = 1.5V, VC1-VSS = 1.5V	-	6.0	-	μA
	保护电压	Voc	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5 → 4.4V	V _{oc} - 0.020	V _{oc}	V _{oc} + 0.020	٧
过 充	解除电压	V _{OCR}	VCn - VCn+1 = 3.5V, VC1-VSS = 4.4 → 3.5V	V _{OCR} - 0.050	V_{OCR}	V _{OCR} + 0.050	٧
电	保护延时	T _{oc}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5 → 4.4V	T _{oc} *70%	T _{oc}	T _{oc} *130%	s
	解除延时	T _{OCR}	VCn - VCn+1 = 3.5V, VC1-VSS = 4.4 → 3.5V	210	300	390	ms
1 <i>h /</i> 4-	启动电压	V_{BAL}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5 → 4.4V	V _{BAL} - 0.025	V_{BAL}	V _{BAL} + 0.025	٧
均衡	均衡延时	T_{BAL}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5 → 4.4V	-	-	77	ms
	保护电压	V _{OD}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5 → 2.0V	V _{OD} - 0.050	V _{OD}	V _{OD} +0.050	٧
过 放	解除电压	V _{ODR}	VCn - VCn+1 = 3.5V, VC1-VSS = 2.0 → 3.5V	V _{ODR} - 0.080	V_{ODR}	V _{ODR} + 0.080	٧
电	保护延时	T _{OD}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5 → 2.0V	T _{OD} *70%	T _{OD}	T _{OD} *130%	s
	解除延时	T _{ODR}	VCn - VCn+1 = 3.5V, VC1-VSS = 2.0 → 3.5V	210	300	390	ms
低	禁充电压	V _{LV}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5 → 1.2V	1.20	1.50	1.80	٧
压禁	禁充延时	T _{LV}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5 → 1.2V	0.84	1.2	1.56	s
充	解除延时	T_{LVR}	VCn - VCn+1 = 3.5V, VC1-VSS = 1.2 → 3.5V	0.84	1.2	1.56	s
放电	/U+b.tr	.,	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V,	V _{EC1} - 0.005	V _{EC1} ≤ 0.050V	V _{EC1} + 0.005	٧
过流	保护电压	V _{EC1}	VRSP -VRSN = 0 → 0.18V	V _{EC1} - 0.010	V _{EC1} ≥ 0.100V	V _{EC1} + 0.010	٧
1	保护延时	T _{EC1}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, V_{RSP} - V_{RSN} = 0 → 0.18V	T _{EC1} *70%	T _{EC1}	T _{EC1} *130%	s
放电过流	保护电压	V _{EC2}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, V_{RSP} - V_{RSN} = 0 → 0.35V,	V _{EC2} *90%	V_{EC2}	V _{EC2} *110%	٧

	项目	符号	测试条件 (n=1 ~ 11)	最小值	典型值	最大值	单 位
2	保护延时	T _{EC2}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, V_{RSP} - V_{RSN} = 0 → 0.35V	T _{EC2} *70%	T _{EC2}	T _{EC2} *130%	ms
短路	保护电压	V _{SHORT}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, V_{RSP} - V_{RSN} = 0 → 0.8V	V _{SHORT} *90%	V_{SHORT}	V _{SHORT} *110%	V
<u> </u>	保护延时	T _{SHORT}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, V_{RSP} -V _{RSN} = 0 → 0.8V	210	300	390	μs
放电过流 解除延时		T _{ECR}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, V_{RSP} - V_{RSN} = 0.8 → 0V	26	38	50	ms
充	保护电压	V _{CHA}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, V_{RSP} - V_{RSN} = 0 → -1.0V	V _{CHA} - 0.005	V _{CHA} ≥ -0.050V	V _{CHA} + 0.005	٧
电				V _{CHA} - 0.010	V _{CHA} = -0.100V	V _{CHA} + 0.010	
过 流 -	保护延时	T _{CHA}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, V_{RSP} -V _{RSN} = 0 → -1.0V	T _{CHA} *70%	T _{CHA}	T _{CHA} *130%	ms
	解除延时	T _{CHAR}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, V_{RSP} -V _{RSN} = -1V → 0V	52	76	100	ms
断线保护	保护延时	T _{ow}	C ₁ ~ C ₁₂ =0.1µF	3.24	4.8	6.36	s
	解除延时	T _{OWR}	C ₁ ~ C ₁₂ =0.1µF	3.24	4.8	6.36	s
	充电高温 保护温度	Тсн	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 10k → 1k	T _{CH} - 3	Тсн	T _{CH} + 3	°C
	充电高温 解除温度	T _{CHR}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 1k → 10k	T _{CHR} -3	T _{CHR}	T _{CHR} + 3	°C
充	放电高温 保护温度	T _{DH}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 10k → 1k	T _{DH} – 3	T_DH	T _{DH} + 3	°Ç
放电	放电高温 解除温度	T_{DHR}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 1k → 10k	T _{DHR} – 3	T_{DHR}	T _{DHR} + 3	°Ç
高温保	充电高温 保护延时	D _{TCH}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R_{NTC1} = 10k → 1k	1.68	2.4	3.12	s
护	充电高温 解除延时	D _{TCHR}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC} = 1k → 10k	1.68	2.4	3.12	s
	放电高温 保护延时	D _{TDH}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC} = 10k → 1k	1.68	2.4	3.12	s
	放电高温 解除延时	D _{TDHR}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 1k → 10k	1.68	2.4	3.12	s
	充电低温 保护温度	T _{CL}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 10k → 3M	T _{CL} – 3	T _{CL}	T _{CL} + 3	°C
充 放	充电低温 解除温度	T_{CLR}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 3M → 10k	T _{CLR} -3	T_CLR	T _{CLR} + 3	°C
电低温	放电低温 保护温度	T _{DL}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 10k → 3M	T _{DL} – 3	T _{DL}	T _{DL} + 3	°C
保护	放电低温 解除温度	T_{DLR}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 3M → 10k	T _{DLR} – 3	T_{DLR}	T _{DLR} + 3	°C
	充电低温 保护延时	D _{TCL}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 10k → 3M	1.68	2.4	3.12	s

	项目	符号	测试条件 (n=1 ~ 11)	最小值	典型值	最大值	单位
	充电低温 解除延时	D _{TCLR}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R_{NTC1} = 3M → 10k	1.68	2.4	3.12	s
	放电低温 保护延时	D _{TDL}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 10k → 3M	1.68	2.4	3.12	s
	放电低温 解除延时	D _{TDLR}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC1} = 3M → 10k	1.68	2.4	3.12	s
	保护温度	T _{EMP2}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC2} = 10k → 1k	T _{EMP2} - 3	T _{EMP2}	T _{EMP2} + 3	°C
高温	解除温度	T _{EMP2R}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R_{NTC2} = 1k → 10k	,	T _{EMP2} -5	-	°C
保护	保护延时	D _{TEMP2}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R _{NTC2} = 10k → 1k	1.68	2.4	3.12	ø
	解除延时	D _{TEMP2R}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, R_{NTC2} = 1k → 10k	1.68	2.4	3.12	s
放电	检测电压	V _{STS}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, VRSP -VRSN = 0 → 10mV	1.0	4.0	7.0	mV
状 态 检测	检测延时	T _{STS}	VCn - VCn+1 = 3.5V, VC1-VSS = 3.5V, VRSP -VRSN = 0 → 10mV	3.0	4.8	6.6	ms
C	O、DO 高	V _{COH} ,	VCC>12V	•	10.8	-	V
4	偷出电平	V_{DOH}	VCC<12V	-	VCC-0.7	-	
C	O、DO 低	V _{COL}		-	Hi-Z	-	V
4	俞出电平	V_{DOL}		-	VSS	-	
CO 高	电平输出电阻	R _{COH}	V12=V11=V10==V1=3.5V, V _{CO} =CO 高输出电平-1.0V	-	2.0	-	kΩ
CO 低	电平输出电阻	R _{col}	V12=V11=V10==V2=3.5V, V1=4.5V V _{CO} =1.0V	-	Hi-Z	-	kΩ
DO 高	电平输出电阻	R _{DOH}	V12=V11=V10==V1=3.5V, V _{DO} =DO 高输出电平-1.0V	-	2.0	-	kΩ
DO 低	电平输出电阻	R _{DOL}	V12=V11=V10==V2=3.5V, V1=1.5V V _{DO} =1.0V	-	1.0	-	kΩ

表 6

■ 功能说明

1. 过充电

任意一节电池电压上升到 Voc 以上并持续一段时间超过 Toc, CO 端子的输出就会反转,将充电控制 MOS 管关断,停止充电,这称为过充电状态。所有电池电压降低到过充电解除电压 VocR 以下并持续一段时间超过 TocR,过充电状态解除,恢复为正常状态。若此时连接负载 Vchar > 0.1V(典型值),当所有电池电压降低到过充电保护电压 Voc 以下时,过充电状态解除,恢复为正常状态,此功能称作负载检测功能。

2. 过放电

任意一节电池电压降低到 Vop 以下并持续一段时间超过 Top, DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电,这称为过放电状态。所有电池电压上升到过放电解除电压 VopR 以上,且 LD 电压小于 3.0V(典型值),并持续一段时间超过 TopR,过放电状态解除,恢复为正常状态。若此时连接充电器 Vlp < -0.1V(典型值),当所有电池电压上升到过放电保护电压(Vop)以上时,过放电状态解除,恢复为正常状态,此功能称作充电器检测功能。

3. 放电过电流

电池处于放电状态时,VRSP - VRSN 端电压随着放电电流的增大而增大,当 VRSP - VRSN 端电压高于 VEC1并持续一段时间超过 TEC1, 芯片认为出现了放电过流 1; 当 VRSP - VRSN 端电压高于 VEC2并持续一段时间超过 TEC2, 芯片认为出现了放电过流 2; 当 VRSP - VRSN 端电压高于 VSHORT 并持续一段时间超过 TSHORT, 芯片认为出现了短路。上述 3 种状态任意一种状态出现后,DO 端子的输出就会反转,将放电控制 MOS 管关断,停止放电。进入放电过流保护状态后,断开负载且 VLD < 3.0V,放电过流保护解除,恢复为正常状态。

4. 充电过电流

正常工作状态下的电池,在充电过程中,如果 V_{RSP} - V_{RSN} 端子电压低于充电过流保护电压(V_{CHA}),且这种状态持续的时间超过充电过流保护延迟 T_{CHA},将充电控制 MOS 管关断,停止充电,这种状态称为充电过流状态。进入充电过流保护状态后,如果断开充电器且 V_{CHAR} > V_{CHA},充电过电流状态被解除,恢复为正常状态。

5. 过温保护

充放电过程中,电芯温度过高或过低都会给电芯带来损坏,因此需要通过热敏电阻 R_{NTC} 用于感知温度变化,当达到设定的保护温度,且维持一段时间后,即发生温度保护,将充电或放电 MOS 管关断,实现对电芯充放电高低温的保护。

当 V_{RSP} - V_{RSN} 端小于 4mV 时,芯片默认识别为充电状态,若检测到温度高于充电高温保护温度 T_{CH} ,且持续时间超过 D_{TCH} ,则关断充电 MOS 管,充电高温保护迟滞温度为 $5^{\circ}C$ 。若检测到温度低于充电低温保护温度 T_{CL} ,且持续时间超过 D_{TCL} ,则关断充电 MOS 管,充电低温保护迟滞温度为 $5^{\circ}C$ 。

当 V_{RSP} - V_{RSN} 端大于 4mV 时,芯片识别为放电状态,若检测到温度高于放电高温保护温度 T_{DH} ,且持续时间超过 D_{TDH} ,则同时关断充放电 MOS 管,放电高温保护迟滞温度为 5° C。若检测到温度低于放电低温保护温度 T_{DL} ,且持续时间超过 D_{TDL} ,则同时关断充放电 MOS 管,放电低温保护迟滞温度为 5° C。

通过设置 CHR, DHR, CLR 电阻大小,可以灵活配置保护温度点。配置步骤如下:

- 1、R_{NTC}电阻选用 103AT, B 值=3435, 常温 10kΩ@25°C。
- 2、确定充电高温保护温度点,比如:50°C。查表 NTC 电阻对应 50°C 时阻值为 4.1KΩ。那么将 CHR 电阻选择为 10 倍阻值 41KΩ 即可。
- 3、同样,确定放电高温保护温度点,比如: 70°C。查表 NTC 电阻对应 70°C 时阻值为 2.2KΩ。那么将 DHR 电阻选择为 10 倍阻值 22KΩ即可。
- 4、同样,确定充电低温保护温度点,比如: -10°C。查表 NTC 电阻对应-10°C 时阻值为 46.29KΩ。那么将 CLR 电阻选择为 10 倍阻值 462.9KΩ 即可。放电低温保护比充电低温保护固定低 20°C。

CM13C1 系列具有 NTC 断线保护功能,若 CHR,DHR,CLR 连接电阻,但 NTC 电阻断线后,芯片会进入 NTC 断线保护状态,CO、DO 端子的输出均会反转;如不使用温度保护功能,可将 RNTC 接固定 $10k\Omega$ 电阻,同时其 CHR,DHR,CLR 接固定 $50k\Omega$ 即可。

充电高温保护温度	CHR 电阻	
45°C	48.5 KΩ	
50°C	41.0 KΩ	
55°C	34.9 KΩ	
60°C	29.8 ΚΩ	
65°C	25.6 ΚΩ	
70°C	22.1 KΩ	

放电高温保护温	度 DHR 电阻
55°C	34.9 KΩ
60°C	29.8 ΚΩ
65°C	25.6 ΚΩ
70°C	22.1 ΚΩ
75°C	19.1 ΚΩ
80°C	16.6 ΚΩ

充电低温保护温度	CLR 电阻	
-20°C	775.2 ΚΩ	
-15°C	596.1 KΩ	
-10°C	462.9 KΩ	
-5°C	362.9 KΩ	
0°C	287.0 ΚΩ	
5°C	229.0 KΩ	

表 7

表 8

表 9

TEMP0 为内置高温保护,固定接 10K NTC 电阻,保护温度从 75° C \sim 90 $^{\circ}$ C 可选, 5° C 一个档位,当达到内置保护温度 T_{EMP2} ,且持续时间超过 2s 时,CO、DO 同时关断。

6. 断线保护

正常状态下,若芯片管脚 VC1~VC12、VCC 中任意一根或多根与电芯的连线断开,芯片则检测判断为发生断线状态,强制将 CO、DO 输出电平反转,同时关断充、放电 MOS,禁止充电与放电,此状态称为断线保护状态。若 VCC 断线前接有负载,当断开的连线重新正确连接后,需要断开负载且 V_{LD} < 3.0V,芯片退出断线保护状态。

7. 低压禁充功能

CM13C1 系列提供低压禁充功能可选,具备低压禁充功能的 IC 在检测到任意节电池电压低于 V_{LV} 并持续一段时间超过 T_{LV} , CO 端子的输出就会反转,将充电控制 MOS 管关断,停止充电。所有电池电压回升到 V_{LVR} 以上并持续一段时间超过 T_{LVR} ,低压禁充状态解除,恢复为正常状态。

8. 均衡功能

CM13C1 系列内置电池均衡功能,内部均衡电阻 250Ω ,通过外部电压采样电阻调节均衡电流,推荐外部电压采样电阻 $100 \sim 1k\Omega$,如需大电流均衡可外部增加均衡电路扩流,均衡电流由外部均衡电阻决定。正常状态下,任意一节电池电压高于均衡检测电压(V_{BAL}),其余电池电压低于均衡检测电压(V_{BAL}),超过均衡启动延迟时间(T_{BAL}),CM13C1 开始均衡。

均衡停止条件:

- 1) 所有电池电压低于均衡检测电压(VBAL);
- 2) 所有电池电压高于均衡检测电压(VBAL);
- 3) CM13C1 进入休眠状态, 断线保护状态, 放电温度保护状态;

CM13C1 采用奇偶通道分时均衡,均衡功能不影响正常的电池电压采样,当同时开启多路均衡通道,奇数通道会先进入均衡状态,偶数通道在下一个周期进入均衡状态,具体电池电压采样和均衡开启时序图如下:

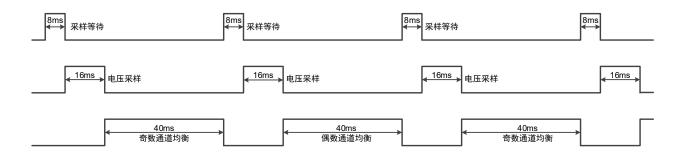


图 4

9. 电池节数设置

SEL2	SEL1	短接电池	应用串数
0	0	-	12 串
0	1	VC12、VC11 短接一起	11 串
1 0		VC12、VC11、V10 短接一起	10 串
1	1	VC12、VC11、V10、V9、V8 短接一起	8 串

表 10

备注: 0表示接地, 1表示浮空

10. 充电禁止放电功能

当 CM13C1 为全分口应用时,插入充电器,充电不放电检测电路开始工作,经检测延时后,关闭 DO,禁止放电。移除充电器后,插入负载,DO 打开,可以再次放电。

11. 电子锁、弱电开关功能

- 1. 无保护功能发生时, CTD 短接到 VSS 时, 延时 128ms, DO 关断。CTD 断开时, 延时 128ms, DO 恢复。
- 2. 若发生过放保护且电压维持过放, CTD 开关无影响输出。若过放保护后恢复至过放保护恢复值以上, CTD 闭合时, 延时 128ms, 控制 DO 关断, 同时屏蔽 LD 负载锁定。CTD 断开时, 恢复过放检测和保护判断。
- 3. 若发生过流、短路保护锁定后, CTD 闭合时, 延时 128ms, 控制 DO 关断, 同时屏蔽 LD 负载锁定。CTD 断开时, 恢复过流和短路检测和保护判断。
- 4. 若温度保护后, DO 关断。CTD 闭合时, 延时 128ms, 控制 DO 关断, 同时屏蔽温度保护功能, CTD 断开时, 恢复温度检测和保护判断。

■ 应用电路

1. 12 串带均衡同口方案

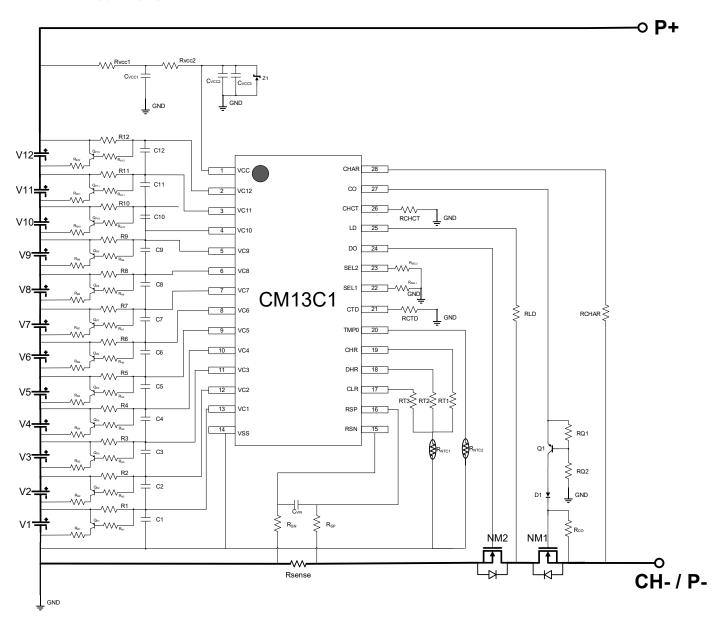


图 5

■ BOM 清单

器件标识	典型值	参数范围	单位
Rvcc1 ~ Rvcc2	330	330 ~ 2000	Ω
R ₁ ~ R ₁₂	1000	330 ~ 2000	Ω
R _{A1} ~ R _{A12}	100	47 ~ 100	Ω
R _{B1} ~ R _{B12}	100	33 ~ 1000	Ω
R _{T1} ~ R _{T3}	-	根据实际选择	-
Rsn, Rsp	100	10 ~ 1000	Ω
R _{NTC1} , R _{NTC2}	10	B=3435, 10K@25°C	kΩ
Rsense	1	根据实际选择	mΩ
Rctd	10	4.7 ~ 15	kΩ
R _{LD}	200	47 ~ 470	kΩ
RCHAR	100	47 ~ 470	kΩ
R _{Q1} , R _{Q2}	3.3	2 ~ 10	МΩ
Rco	3.3	2 ~ 10	МΩ
Rcнcт	1	0.47~2.2	kΩ
Rsel1, Rsel2	10	4.7 ~ 15	kΩ
C ₁ ~ C ₁₂	0.1	0.1 ~ 1	μF
C _{VIN}	0.1	0.01 ~ 1	μF
Cvcc1 ~ Cvcc2	2.2	1.0 ~ 4.7	μF
Суссз	0.1	0.01 ~ 1.0	μF
Q _{P1} ~ Q _{P12}	-	PNP 三极管,功率>0.5W	-
Q1	-	PNP 三极管,功率>0.5W	-
D1	-	VF<0.4V@1mA,V(BR)≥80V	-
Z1	-	> 100V	V

表 11

注意:

- 1. 为保证CM13C1工作正确,建议先连接VSS,再连接VCC,最后连接其他端子,以确保芯片正常工作。
- 2. 如非上述两种典型应用方案应用,请咨询我司FAE。
- 3. 其它特殊应用电路需要更改部分BOM,例如P充N放方案、超大电流充放电等。
- 4. Rco等电阻的值需要结合MOSFET的器件参数和系统级功能需求进行调试。
- 5. 上述参数有可能不经预告而作更改。
- 6. 上述IC的原理图以及参数并不作为保证电路工作的依据,请在实际的应用电路上进行充分的实测后再设定参数。

■ 封装信息

SSOP28 封装尺寸

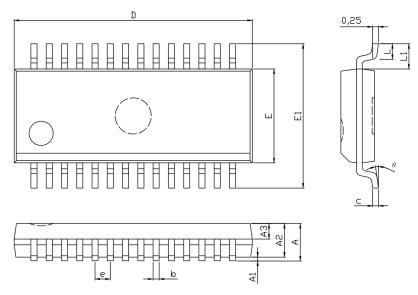


图 6

单位: mm

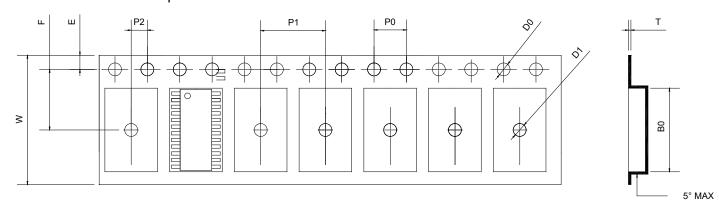

SYMBOL	MIN	MAX
Α		1.75
A1	0.08	0.225
A2	1.35	1.50
A3	0.60	0.70
b	0.23	0.31
С	0.20	0.24
D	9.70	11.00
Е	3.70	4.10
E1	5.80	6.20
е	0.58	0.69
L	0.50	0.80
L1	0.99	1.10
θ	0°	8°

表 12

■ 载带信息

Loaded tape feed direction \rightarrow

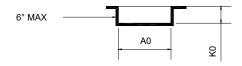


图 7

Туре	W*P1	Unit
SSOP28	16.0*8.0	mm
Item	Specification	Tol (+/-)
W	16.00	+0.30/-0.10
F	7.50	±0.05
E	1.75	±0.10
P2	2.00	±0.10
P1	8.00	±0.10
P0	4.00	±0.10
P0*10	40.00	±0.20
D0	1.50	+0.10/-0
D1	1.50	+0.25/-0
Т	0.30	±0.05
В0	10.35	±0.10
A0	6.50	±0.10
K0	2.10	±0.10

表 13

■ 卷盘信息

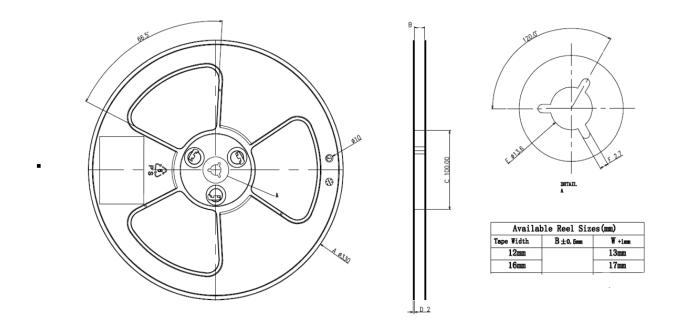


图 8

■ 包装信息

卷盘	PCS/盘	盘/盒	盒/箱
13"×16mm	3000	2	8

使用注意事项

- 1. 本说明书中的内容,随着产品的改进,有可能不经过预告而更改。需要更详细的内容,请与本公司市场部门联系。
- 2. 本规格书中的电路示例、使用方法等仅供参考,并非保证批量生产的设计,因第三方所有权引发的问题,本公司对此 概不承担任何责任。
- 3. 本规格书在单独应用的情况下,本公司保证它的性能、典型应用和功能符合说明书中的条件。当使用客户的产品或设备时,以上条件我们不作保证,建议客户做充分的评估和测试。
- 4. 请注意在规格书记载的条件范围内使用产品,请特别注意输入电压、输出电压、负载电流的使用条件,使IC内的功耗不超过封装的容许功耗。对于客户在超出规格书中规定额定值使用产品,即使是瞬间的使用,由此造成的损失,本公司对此概不承担任何责任。
- 5. 在使用本产品时,请确认使用国家、地区以及用途的法律、法规,测试产品用途的满足能力和安全性能。
- 6. 本规格书中的产品,未经书面许可,不可用于可能对人体、生命及财产造成损失的设备或装置的高可靠性电路中,例如:医疗器械、防灾器械、车辆器械、车载器械、航空器械、太空器械、核能器械等,亦不得作为其部件使用。本公司指定用途以外使用本规格书记载的产品而导致的损害,本公司对此概不承担任何责任。
- 7. 本公司一直致力于提高产品的质量及可靠性,但所有的半导体产品都有一定的概率发生失效。 为了防止因本产品的概率性失效而导致的人身事故、火灾事故、社会性损害等,请客户对整个系统进行充分的评价,自 行负责进行冗余设计、防止火势蔓延措施、防止误工作等安全设计,可以避免事故的发生。
- 8. 本产品在一般的使用条件下,不会影响人体健康,但因含有化学物质和重金属,所以请不要将其放入口中。另外,封装和芯片的破裂面可能比较尖锐,徒手接触时请注意防护,以免受伤等。
- 9. 废弃本产品时,请遵守使用国家和地区的法令,合理地处理。
- 10. 本规格书中内容,未经本公司许可,严禁用于其它目的的转载或复制。